
Discrimination of Communication Vocalizations by Single Neurons and
Groups of Neurons in the Auditory Midbrain

David M. Schneider and Sarah M. N. Woolley
Doctoral Program in Neurobiology and Behavior and Department of Psychology, Columbia University, New York, New York

Submitted 22 December 2009; accepted in final form 30 March 2010

Schneider DM, Woolley SMN. Discrimination of communication
vocalizations by single neurons and groups of neurons in the auditory
midbrain. J Neurophysiol 103: 3248–3265, 2010. First published
March 31, 2010; doi:10.1152/jn.01131.2009. Many social animals
including songbirds use communication vocalizations for individual
recognition. The perception of vocalizations depends on the encoding
of complex sounds by neurons in the ascending auditory system, each
of which is tuned to a particular subset of acoustic features. Here, we
examined how well the responses of single auditory neurons could be
used to discriminate among bird songs and we compared discrim-
inability to spectrotemporal tuning. We then used biologically realistic
models of pooled neural responses to test whether the responses of
groups of neurons discriminated among songs better than the re-
sponses of single neurons and whether discrimination by groups of
neurons was related to spectrotemporal tuning and trial-to-trial re-
sponse variability. The responses of single auditory midbrain neurons
could be used to discriminate among vocalizations with a wide range
of abilities, ranging from chance to 100%. The ability to discriminate
among songs using single neuron responses was not correlated with
spectrotemporal tuning. Pooling the responses of pairs of neurons
generally led to better discrimination than the average of the two
inputs and the most discriminating input. Pooling the responses of
three to five single neurons continued to improve neural discrimina-
tion. The increase in discriminability was largest for groups of
neurons with similar spectrotemporal tuning. Further, we found that
groups of neurons with correlated spike trains achieved the largest
gains in discriminability. We simulated neurons with varying levels of
temporal precision and measured the discriminability of responses
from single simulated neurons and groups of simulated neurons.
Simulated neurons with biologically observed levels of temporal
precision benefited more from pooling correlated inputs than did
neurons with highly precise or imprecise spike trains. These findings
suggest that pooling correlated neural responses with the levels of
precision observed in the auditory midbrain increases neural discrim-
ination of complex vocalizations.

I N T R O D U C T I O N

Vocal communicators such as humans and songbirds recog-
nize and discriminate among complex sounds, like speech and
song. As with behaving animals, the spiking responses of
single neurons can also be used to discriminate among sensory
signals. This ability, called neural discrimination, describes
how well sensory stimuli can be classified based on a neuron’s
spiking response. In the visual, somatosensory, and auditory
systems, the responses of individual neurons can be used to
accurately discriminate among stationary stimuli based on
differences in firing rate because different stimuli elicit differ-
ent rates of action potentials (APs) (Britten et al. 1992; Her-

nandez et al. 2000; Relkin and Pelli 1987). However, time-
varying stimuli such as communication vocalizations are often
poorly discriminated based on firing rate alone (Schnupp et al.
2006) and, even when considering AP timing, the discrim-
inability calculated from responses of most auditory neurons is
worse than that of behaving animals (Engineer et al. 2008;
Wang et al. 2007).

The failure of many individual auditory neurons to produce
spike trains that can be used to accurately discriminate among
complex sounds is due in part to the temporal imprecision of
neural responses, which can be observed in the trial-to-trial
variability in spiking responses to repeated presentations of the
same sound (Kara et al. 2000). Neural mechanisms that com-
pensate for the temporal imprecision of individual spike trains
may facilitate neural and behavioral discrimination of complex
sensory cues. For example, the combined activity of groups of
neurons, rather than single cells, may compensate for spike
train imprecision and may be important for sensory discrimi-
nation (Cohen and Newsome 2009; Geffen et al. 2009).

One approach to studying whether the combined responses
of multiple neurons facilitates discrimination among complex
sensory signals is to pool the responses of multiple neurons
using simple models of neural integration. This approach
corresponds to the fundamental circuit mechanism by which
sensory neurons process information: convergence of feedfor-
ward input via synaptic integration. Testing the effects of input
convergence on output responses has typically been used to
measure neural discriminability among stationary cues (Gold
and Shadlen 2001; Jazayeri and Movshon 2006; Miller and
Recanzone 2009; Seung and Sompolinsky 1993; Zhang and
Reid 2005). Pooling the responses of individual neurons can
also be used to test how input convergence affects population
discrimination of complex sensory signals such as birdsong.

Pooling spike trains from multiple neurons could facilitate
neural discriminability in two ways. For neurons with impre-
cise firing, pooling responses from inputs with strong signal
correlations could increase the signal-to-noise ratio, thus facil-
itating discrimination. For highly precise neurons, pooling
spike trains from neurons with weak signal correlations could
facilitate discrimination by providing independent information
encoded by multiple neurons. Here, we asked whether, and to
what degree, the pooled activity of groups of auditory neurons
facilitated the discrimination of complex, time-varying sounds.
Further, we asked whether neural discrimination depended on
the strength of the signal correlations among inputs.

We recorded from neurons in the auditory midbrain nucleus
mesencephalicus lateralis dorsalis (MLd), which is homolo-
gous to the inferior colliculus in mammals. MLd receives
converging input from multiple pathways that originate in the
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cochlear nuclei and it sends auditory information to the pri-
mary auditory forebrain areas via the thalamus. Neurons in
MLd typically have stimulus-locked responses to complex
natural and artificial sounds (Woolley and Casseday 2004,
2005; Woolley et al. 2006) and their responses may be able to
reliably discriminate among complex sounds.

We measured the degree to which single neuron responses
could be used to discriminate among multiple conspecific
songs based on spike train patterns. For single neurons, we
measured the degree to which discriminability depended on
spectral and temporal tuning properties. We then created a
simple integration model that pooled the spiking responses of
groups of neurons and tested whether small groups of cells
discriminated better than did single neurons. For these groups
of neurons, we compared neural discriminability with the
tuning similarity of the input neurons and with the correlation
between the input spike trains. Last, we simulated populations
of neurons with varying degrees of spike train precision to
investigate the conditions under which pooling responses from
correlated inputs facilitated neural discrimination.

M E T H O D S

All procedures were done in accordance with the National Institutes
of Health and Columbia University Animal Care and Use Policy.
Adult male zebra finches (Taeniopygia guttata) were used in this
study. All birds were either purchased from a local bird farm (Canary
Bird Farm, Old Bridge, NJ) or were bred and raised on site. Prior to
electrophysiology, the birds lived in a large aviary with other male
zebra finches, where they received food and water without restriction,
as well as vegetables, eggs, grit, and calcium supplements.

Surgery

Two days prior to recording, male zebra finches were anesthetized
with a single intramuscular injection of 0.04 ml Equithesin (0.85 g
chloral hydrate, 0.21 g pentobarbital, 0.42 g MgSO4, 8.6 ml propylene
glycol, and 2.2 ml of 100% ethanol to a total volume of 20 ml with
H2O). Following lidocaine application, feathers and skin were re-
moved from the skull and the bird was placed in a custom-designed
stereotaxic holder with its beak pointed 45° downward. Small open-
ings were made in the outer layer of the skull, directly over the
electrode entrance locations. To guide electrode placement during
recordings, ink dots were applied to the skull at stereotaxic coordi-
nates (2.7 mm lateral and 2.0 mm anterior from the bifurcation of the
sagittal sinus). A small metal post was then affixed to the skull using
dental acrylic. After surgery, the bird recovered for 2 days.

Stimuli

Stimuli were the songs of 20 different adult male zebra finches
sampled at 48,828 Hz and the frequency was filtered between 250 and
8,000 Hz. Songs were played at an average intensity of 72 dB SPL and
presented in pseudorandom order, for a total of 10 trials each. All
songs were balanced for root mean square (RMS) intensity. Songs
ranged in duration between 1.62 and 2.46 s and a silent period of 1.2
to 1.6 s separated the playback of subsequent songs. All songs were
unfamiliar to the bird from which electrophysiological recordings
were made.

Electrophysiology

In preparation for electrophysiological recording, the bird was
given three intramuscular injections of 0.03 ml of 20% urethane,
separated by 20 min. The bird was wrapped in a blanket and placed in

a custom holder using the head post. The bird’s body temperature was
monitored by placing a thermometer underneath the wing and was
maintained between 38 and 40°C using an electric heating pad (FHC).
The experiments were performed in a sound-attenuating booth (IAC).
The bird was on a table near the center of the room and a single
speaker was located 23 cm directly in front of the bird.

We recorded from single auditory neurons in the midbrain auditory
nucleus mesencephalicus lateralis, pars dorsalis (MLd), using either
tungsten microelectrodes (FHC) or glass pipettes filled with 1 M NaCl
(Sutter Instrument). For both glass and tungsten recordings, electrode
resistance was between 3 and 10 M� (measured at 1,000 Hz).
Electrode signals were amplified (�1,000) and filtered (300–5,000
Hz; A-M Systems). During recording, voltage traces and APs were
visualized using an oscilloscope (Tektronix) and custom software
(Python; Matlab, The MathWorks). Spike times were detected using a
threshold discriminator and spike waveforms were saved for off-line
sorting and analysis. For off-line sorting, spike waveforms were
upsampled four times using a cubic spline function (Joshua et al.
2007). Action potentials were separated from nonspike events by
waveform analyses and cluster sorting using the first three principal
components of the AP waveforms (custom software, Matlab).

Neurons were recorded bilaterally and were sampled throughout the
extent of MLd, which is located about 5.5 mm ventral to the dorsal
surface of the brain (Fig. 1A). We recorded from all neurons within
MLd that were driven (or inhibited) by any of the search sounds (one
rendition each of song and noise). Isolation was ensured by calculat-
ing the signal-to-noise ratio of AP and non-AP events and by moni-
toring baseline firing rate throughout the recording session. Although
neurons were recorded bilaterally, we typically recorded from only
one neuron at a time (96 of 122 neurons). When we recorded the
activity of two neurons simultaneously (n � 13 pairs), they were
always located in opposite hemispheres. For the 13 pairs of simulta-
neously recorded neurons, we measured the strength of signal and
noise correlations and compared these to the strength of correlations
observed in nonsimultaneously recorded neurons (Lee et al. 1998).
We binned spike trains using 200 ms bins, overlapping by 150 ms. We
found no differences in the signal or noise correlations during baseline
or driven activity between simultaneously and nonsimultaneously
recorded neurons (all comparisons, P � 0.68; Wilcoxon rank-sum
test).

Single neuron neurometrics

We used four neurometrics to quantify the ability of single neuron
responses to discriminate among 20 songs based on single spike train
responses to individual songs. The Victor–Purpura (VP) metric cal-
culates the “cost” of converting one spike train into another through a
series of elementary steps (Victor and Purpura 1996): the insertion of
a missing spike, the deletion of an extra spike, and the shifting of a
common spike that is misaligned in time. The cost of inserting or
deleting a spike is 1 (a unitless quantity). The cost of shifting a spike
in time is equal to the size of the shift (in milliseconds) multiplied by
a shifting cost q (in units 1/ms). For each neuron, we tested multiple
values of q (range: 0.002–0.5/ms). For single MLd neurons, the
optimal value of q ranged from 0.5 to 0.002/ms. The average neural
discriminability across the population was maximized for q � 0.05/ms
and this value was used for every neuron in all subsequent analyses.
For a pair of spike trains and a shifting cost q, the algorithm finds the
cheapest set of steps to convert one spike train into the other. The less
it costs to make the two spike trains identical, the more similar they
were to begin with. To calculate percentage correct, we randomly
selected one spike train from each song to be used as templates (i.e.,
20 of the 200 spike trains were templates). The remaining 180 spike
trains were then classified as being evoked by the song associated with
the lowest cost transformation. Percentage correct was calculated as
the fraction of spike trains that were correctly classified (Machens et
al. 2003).
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The van Rossum (VR) distance metric quantifies the dissimilarity
between a pair of spike trains by calculating the distance between the
spike trains in high-dimensional space (van Rossum 2001). Each spike
train was discretized into 1 ms bins, creating a point process of zeros
and ones that was filtered with an exponential function with a short
decay constant �

N� � �
i�1

M

H(t � ti)e
[�(t�ti)⁄�]

where H(t) is the Heaviside step function, M is the total number of
spikes in the spike train, and N is the resulting smoothed spike train.
For every neuron, we varied the value of � between 5 and 500 ms and
we measured neural discriminability for each decay constant. For
single neurons, the optimal decay constant spanned the range tested (5
to 500 ms). The average discriminability for the population of neurons
was maximized for � � 20 ms and all subsequent analyses used this
decay constant for every neuron.

We then calculated the squared Euclidean distances between pairs
of smoothed spike trains. Distance represents the dissimilarity be-
tween two spike trains; spike trains that are similar to one another
have a smaller distance between them than spike trains that are
dissimilar

Dij �
1

�
�0

T
[Ni(t) � Nj(t)]

2dt

where Dij is the distance between spike trains Ni and Nj and � is the
decay constant used to smooth the spike trains. Percentage correct was
calculated by randomly selecting one spike train from each of the 20
stimuli as a template. The remaining 180 spike trains were then
classified as being evoked by the song whose template was most
similar.

The firing rate (FR) metric used the response strength (calculated as
the driven firing rate minus the baseline firing rate) in response to each
stimulus to calculate neural discriminability. As with the VR and VP
metrics, a template spike train was chosen for each song and the
remaining 180 spike trains were classified as being evoked by which-
ever song had a more similar firing rate.

The K-means algorithm classified spike trains into K clusters based
on their proximity to one another in high-dimensional space (Fig. 2).
As with the VR metric, the K-means metric used squared Euclidean
distance as a measure of spike train similarity. However, unlike the
VR metric, the K-means metric used an iterative clustering algorithm
to optimally separate the spike trains into K groups (Duda et al. 2001).
The spike trains were first smoothed with an exponential decay that
optimized the average discriminability across the population (� � 10
ms). The number of clusters (K) was equal to the number of stimuli
used to generate the set of spike trains. The algorithm first randomly
selected K spike trains as the initial cluster centers and grouped with
each of these centers all the spike trains that were nearer that center
than any other. Once all of the spike trains were grouped, the center
of each cluster was recalculated as the geometric center of the spike
trains belonging to each group. Cluster membership was recalculated
using the new center positions and the algorithm was iterated until it
converged on a set of K clusters, each of which contained spike trains
that were closer to one cluster center than to any other. We did not
force each cluster to contain 10 trials, which was the number of
repetitions per stimulus. By allowing the cluster size to vary, the spike
trains naturally segregated into 20 optimal clusters. Enforcing a
cluster size would have decreased discriminability by associating
distant spike trains with nonoptimal clusters.

Percentage correct was measured by analyzing the spike trains that
belonged to each of the K clusters. We assigned a song label to each
cluster using a “voting” scheme, in which each spike train in a cluster
cast a vote for the song that evoked it. Each cluster was assigned to the
song that cast the most votes. If more than one cluster had the same number
of votes for a particular song (e.g., two clusters contained five spike
trains from song 1), the cluster that contained the fewest spike trains
from any other song was assigned to the original song (e.g., song 1),
and the other cluster was assigned to the song that cast the second
largest number of votes. In this way, discriminability for a particular
set of 20 clusters was optimized. If each cluster contained spike trains
evoked by only one song, the neuron performed with 100% discrim-
inability. If one or more spike trains were misclassified, percentage
correct dropped toward chance, which was (100/K) � 5%.

We calculated d= as another measure of neural discriminability.
Unlike percentage correct, d= is not bounded between 0 and 100% and
can therefore resolve differences in discriminability for neurons per-
forming at 100%. To calculate d=, we first smoothed each spike train
with an exponential decay (� � 10 ms) and projected the spike trains
from two stimuli onto a single vector that connected the average
neural response for each group; the average neural response for a
particular song was the average smoothed spike train in response to
that song. We then fit a normal distribution to each of the clusters and
measured the separability between the clusters, which is the distance
between the cluster means (in Euclidean space) normalized by the
variance of the clusters
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FIG. 1. Single neurons in zebra finch mesencephalicus lateralis dorsalis
(MLd) showed a range of responses to song. A: diagram of the zebra finch
ascending auditory system and electrode placement. B: the waveform (top) and
spectrogram (middle) of a single zebra finch song. Below the spectrogram,
raster plots show spike trains collected from 8 neurons in response to multiple
presentations of the song. Each line shows a single spike train and each tick
represents the timing of a single action potential (AP). Each group of 10 spike
trains shows the responses of a single neuron to 10 presentations of the song.
For the song spectrogram, red represents high intensity and blue represents low
intensity.
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d' �
1

�20 · 19

2 ��
i�1

19

�
j�i�1

20 |ui � uj|

�ni�i
2 � nj� j

2

ni � nj

where ui is the mean value of the ith cluster, vi is the variance of the
ith cluster, and ni is the number of spike trains belonging to the ith
cluster. For each neuron, we calculated d= for every pair of clusters
(190 pairs) and we averaged across all cluster pairs.

Each neurometric was iterated 100 times and, on each iteration, the
neurometrics were seeded with a different set of randomly selected
template spike trains. The resulting discrimination values are the mean
performance across all 100 iterations. On a given iteration, if a spike
train was equally similar to two or more templates, that spike train

was scored as misclassified even if one of the templates repre-
sented the appropriate song category. We used this assignment
criterion because ambiguity suggests poor neural discriminability.
Because of this criterion, neural performance could be worse than
chance, which was 5%.

Analysis of tuning

Spectrotemporal receptive fields (STRFs) were computed using the
songs of 20 zebra finches and the neural responses to those songs
(Theunissen et al. 2000). To estimate the best linear STRFs, we
implemented a normalized reverse correlation technique using the
STRFpak toolbox for Matlab (http://strfpak.berkeley.edu). To esti-
mate the validity of the STRFs, we measured the correlation coeffi-
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FIG. 2. MLd neural responses discrimi-
nated among songs with a wide range of
abilities. A: spike trains from a single neuron
in response to 10 repetitions of 20 unique
zebra finch songs. Each group of 10 lines
shows the responses to 10 presentations of a
single song. The songs were pseudoran-
domly interleaved during the experiment and
the responses were organized here for visu-
alization. For analysis, the spike trains were
truncated to the duration of the shortest song
(1.62 s; nonshaded region). B: spike trains
from a second neuron in response to the
same stimuli as in A. C: in the K-means and
van Rossum metrics, spike trains were rep-
resented as points in a 1,620-dimensional
space (one dimension for each millisecond of
activity). For illustration, here the spikes in
response to the first 3 songs were projected
onto 2 dimensions (the first 2 principal com-
ponents). Spike trains from song 1 are shown
in green, song 2 in blue, and song 3 in red.
The K-means algorithm was used to classify
the spike trains into clusters based on spike
train dissimilarity. The shape of the marker
corresponds to cluster membership. For Neu-
ron 1, spike trains evoked by each song
belong to their own cluster, indicating high
discriminability. D: for Neuron 2, cluster 3
contains spike trains from songs 1, 2, and 3,
indicating that the spike trains produced by
this neuron cannot perfectly discriminate
among the 3 songs. Color and shape labels
are the same as in C.
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cient between predicted responses to novel songs (those not used in
the STRF calculation) and the neuron’s actual response to those songs.
STRF predictions were computed by convolving the time-reversed
STRF with the song spectrogram and half-wave rectifying. The
correlation coefficients reported here are the mean correlation coeffi-
cients across 20 predictions.

From each STRF, we made multiple measures of auditory tuning
and compared these values with the neural discrimination perfor-
mance for each cell. To measure tuning, we projected the STRF onto
the spectral and temporal axes. STRFs of MLd neurons are highly
separable in frequency and time (Woolley et al. 2009). Therefore
projecting the STRF onto the spectral and temporal axes results in
very little information loss. Two measures of spectral tuning were
used: best frequency (BF) and excitatory bandwidth (BW). Best
frequency was determined by projecting the STRF onto the frequency
axis and calculating the peak of this vector. The bandwidth of each
STRF was measured at the time corresponding to the peak in excita-
tion (i.e., response latency: 8.48 � 2.85 ms, mean � SD; range: 4 to
23 ms) and was calculated by computing the width of STRF pixels
that were 3SDs above the average pixel value. To measure temporal
tuning, we projected the STRF onto the time axis. Using this vector,
we calculated the temporal modulation period, which was the differ-
ence in time between the peak in excitation and the peak in inhibition.
We also calculated the Excitatory–Inhibitory (EI) index, which is the
difference between the areas of excitation and inhibition divided by
the sum of the areas (range: �1 to 1)

EIindex �
�F �T

STRFE � �F �T
STRFI

�F �T
STRFE � �F �T

STRFI

�
�F �T

STRF

�F �T
|STRF|

where STRF is the two-dimensional spectrotemporal receptive field.
STRFE is the excitatory portion of the STRF, for which pixels less
than zero were set to zero, and STRFI is the inhibitory portion of the
STRF, for which pixels greater than zero were set to zero. This
definition of the EI index is equivalent to the integral of the STRF
divided by the integral of the absolute value of the STRF, shown on
the far right-hand side. The EI index corresponds to traditionally
defined temporal response patterns of auditory neurons to pure tones
(e.g., onset, primary-like, sustained; Woolley and Casseday 2004;
Schneider and Woolley, unpublished data).

We compared the tuning properties of pairs and triplets of neurons.
For pairs of neurons, we took the absolute value of the difference
between the tuning parameter of each neuron. For comparing re-
sponses among three neurons, we measured the absolute value of the
difference in tuning for each pair in the triplet and calculated the
average similarity of all three pairs. For an arbitrary tuning parameter
p and neurons i, j, and k

�pij � |pi � pj|

�pijk �
1

3
�|pi � pj| � |pi � pk| � |pj � pk|�

Analysis of within-stimulus spike train similarity

For each neuron, we calculated the shuffled autocorrelogram
(SAC), as described in Joris et al. (2006). To compute the SAC, we
first binned spike times into 1 ms bins. For each spike train evoked by
a single song, we measured every cross-spike train interspike interval.
The histogram of the cross-spike train intervals provided a measure of
the tendency for neurons to fire at similar times to repeated playback
of the same song. To account for the increased number of trial-to-trial
coincident spikes due to firing rate and the number of times a song
was repeated, we normalized the SAC by a normalization constant
(Christianson and Pena 2007; Joris et al. 2006)

normval � N(N � 1)R2�D

where N is the number of times the song was presented (typically 10),
R is the average firing rate across all N presentations of the song, � is
the duration of the coincidence window (1 ms), and D is the duration
of the song (1.621 s). For each neuron, we averaged the SAC
calculated independently from responses to each of the 20 songs.

From the SACs, we made two measures of spike train reliability.
First, we computed the coincidence index (CI), which was the nor-
malized number of coincident spikes at 0 ms lag (i.e., the normalized
rate with which spikes were stimulus-locked with 1 ms resolution).
We also calculated the half-width at half-height for each SAC, which
provided an estimate of the trial-to-trial spike-timing jitter in response
to a single song. In general, the CI is largest for neurons with a high
degree of trial-to-trial temporal precision and decreases with temporal
imprecision, whereas half-width increases with temporal imprecision.
To quantify temporal precision as a single value, we calculated the CI
to half-width ratio, which is largest for neurons with high temporal
precision and decreases as the temporal precision decreases.

Last, we measured the spike train similarity across pairs of neurons
using an extension of the d= metric. For a pair of neurons, we first
convolved each spike train with an exponential decay with a time
constant of 10 ms. Using spike trains from the two neurons that were
evoked by a single song, we then calculated the squared Euclidean
distance between every pair of cross-neuron spike trains and the
variance among the spike trains produced by each of the single
neurons. For each song, we calculated d=, which was the average
distance between the spike trains of the two neurons normalized by
the average variance of the responses. For each pair of neurons, we
calculated d= for every song and here we report the average value
across all songs.

Modeling readout neurons

We analyzed the pooled responses of groups of MLd neurons
ranging in size from two to five neurons, which were selected at
random from our set of MLd neurons (Parker and Newsome 1998).
The models were simulations of a readout neuron that integrated
information from multiple input neurons using three methods that
simulated well-established physiological processes. The SUM model
simulated subthreshold changes in membrane potential by integrating
the responses from all input neurons and producing a graded output.
The OR model simulated postsynaptic spiking activity and fired a
single AP when one or more input neurons fired an AP. The AND
model simulated coincidence detection, in which the readout neuron
fired only when concurrent input arrived from each of the input
neurons

RSUM � �
i�1

n

N�i

ROR � �
i�1

n

N�i

RAND � �
i�1

n

N�i

In the previous three equations, R is the output of the readout model
and N is the input from a single MLd neuron. Depending on the
number of input neurons, n ranged from 2 to 5.

For each readout neuron, we simulated 200 trials: 10 trials for each
of the 20 songs used in the electrophysiology experiments. On each
trial, one spike train (corresponding to the appropriate song) from
each input neuron was randomly selected. For the AND model, an AP
was triggered at the readout neuron when every input neuron fired an
AP within 5 ms of each other. We chose the integration time of 5 ms
based on the observed integration time of midbrain auditory neurons
(Andoni et al. 2007) and the time course of excitatory and inhibitory
synaptic currents (Covey et al. 1996; Pedemonte et al. 1997). As the
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integration window for the AND model increased in duration, the output of
the AND model approached that of the OR model. The output of each
readout neuron was filtered with an exponential kernel of 10 ms and
discriminability of the resultant spike trains was measured using d=.

To approximate the maximum discriminability that groups of neu-
rons could achieve, we measured the discriminability of groups of
neurons for which the spike trains were concatenated, rather than
pooled. For this model, the dimensionality of the spike trains used as
inputs to the discrimination algorithm was (1,621 � n).

Simulating pairs of neurons with varying temporal precision
and response similarity

To test how tuning similarity and reliability affected the neural
discrimination achieved by pairs of neurons, we simulated pairs of
neurons that varied in the similarity of their responses and in their
trial-to-trial spike train variability. For each neuron in a simulated
pair, we generated 10 spike trains to each of 20 songs using a Poisson
distribution with a time-varying mean that determined the probability
of spiking. The functions describing the time-varying distributions
were spike trains from actual MLd neurons that were convolved with
a smoothing window and that served as “templates” for generating
simulated spike trains. On each simulated trial, we generated a set of
APs from the time-varying distribution. The degree of trial-to-trial
spike train variability was controlled by smoothing each template with
Hanning windows of varying widths, ranging from 1 to 100 ms.
Differences in the similarity of the spike trains produced by each of
the simulated neurons were introduced by allowing each spike in the
template of one of the neurons to move �n ms, where n was a random
number between 0 and N. We systematically varied N between values
of 0 and 125 ms. Thus using a single set of spike trains as templates,
we simulated two neurons and systemically varied their across-neuron
response similarity and within-neuron trial-to-trial variability. We
simulated 122 different pairs of neurons (each generated from the
spike trains of a single MLd neuron) at each level of response
similarity and reliability. Using the simulated spike trains, we calcu-
lated single-neuron discriminability using d= and the ability of each
pair of neurons to discriminate using the OR readout model.

R E S U L T S

We recorded spike trains from 122 extracellularly isolated
auditory midbrain (MLd) neurons from 34 adult male zebra
finches. From each neuron, we recorded responses to 10
presentations (trials) of 20 different adult zebra finch songs,
presented pseudorandomly (Fig. 1). Responses were generally
stimulus-locked but ranged widely in spike rate and reliability
(Fig. 1B). To measure how well the responses of single MLd
neurons could be used to discriminate among songs and how
discrimination was related to other response features, we mea-
sured neural discrimination from single neuron responses to the
20 songs and compared discriminability to spike rate and
spectrotemporal tuning.

Midbrain neurons show a wide range of neural
discrimination performance

The ability of single neuron responses to discriminate among
songs is maximized when spike trains evoked by repeated
presentations of the same song are highly similar, indicating
response reliability within a stimulus, and when spike trains
evoked by the presentation of different songs are dissimilar,
indicating response diversity across stimuli. We asked how
well the responses of single neurons could be used to discrim-
inate among 20 different zebra finch songs using four neuro-

metric algorithms. Because the songs varied in duration (range:
1.62 to 2.46 s), we truncated each spike train to the length of
the shortest song. Figure 2, A and B shows the spike trains from
two example neurons in response to 10 playback trials of 20
songs.

The Victor–Purpura (VP), van Rossum (VR), and firing rate
(FR) metrics have previously been applied to neural responses
in the auditory and visual systems (Victor and Purpura 1996;
Wang et al. 2007). The VP and VR metrics calculate the
dissimilarity between pairs of spike trains using information
encoded by the timing of APs (METHODS). The FR metric
measures the dissimilarity among neural responses based on
the mean firing rate of each spike train. The K-means metric
classifies spike trains into clusters based on the information
conveyed by the timing of APs. Here, the algorithm was used
to separate spike trains into 20 groups (because there were 20
songs) by finding 20 spike train clusters that maximized the
within-group similarity and across-group diversity. Figure 2, C
and D shows how the spike trains from the neurons in Fig. 2,
A and B cluster using the K-means metric.

For neural discrimination of the 20 songs, the K-means
metric significantly outperformed the VR, VP, and FR metrics
(Fig. 3A). Average performances for the four metrics were
55.83 � 34.5% (K-means), 43.31 � 33.7% (VR), 41.27.0 �
34.1% (VP), and 4.55 � 3.3% (FR). For the K-means, VR, and
VP metrics, and percentage correct performance ranged from
chance (5%) to perfect (100%) discriminability, indicating that
some neurons fired with significantly higher fidelity than did
others (see Figs. 1B and 2, A and B). The three neurometrics
that used information conveyed by the timing of APs (K-
means, VR, and VP) performed significantly better than the FR
metric (which did not perform significantly better than chance;
P � 0.13, Student’s t-test), indicating that spike timing was
important for the neural discrimination of these complex
sounds (Fig. 3A, right).

The average discriminability using the K-means metric was
significantly higher than that of any of the other metrics (P �
1e-10, all comparisons, Wilcoxon signed-rank test) and 31 of
the 122 (25.4%) neurons performed with nearly perfect dis-
criminability (�99%) using the K-means metric. Although the
VR and VP metrics predicted substantially lower estimates of
discriminability than did the K-means metric, discriminability
measured with the three metrics was highly correlated at the
single neuron level (Fig. 3, B and C). In addition to estimating
higher discriminability for MLd neurons, the K-means algo-
rithm avoids the direct comparison of spike train pairs, but
instead groups all spike trains simultaneously based on their
similarity to one another (METHODS). Further analyses of single
neuron discriminability used only the K-means neurometric.

Discriminability increases with firing rate and spike
train duration

Because the midbrain neurons from which we recorded
produced spike trains that exhibited a wide range of discrim-
inability, we asked what aspects of their responses to songs
were correlated with discrimination performance. Discrim-
inability was significantly correlated with response strength
(Fig. 3D), increasing linearly between response strengths of 0
and 13 Hz (n � 84, y � 8.50x � 5.67; r � 0.69), and saturating
at 100% for nearly every neuron that fired �13 spikes/s above
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baseline (n � 31; 95.6 � 10.4%, mean � SD). Neurons that
were inhibited (defined as mean driven firing rates that were lower
than baseline firing rates) during stimulus presentation tended to
be poor discriminators (n � 7; 36.8 � 31.2%, mean � SD).

Discriminability also increased as a function of spike train
duration (Fig. 3E). We systematically shortened the spike
trains used in the neural discrimination analysis, restricting the

number of spikes accessible to the neurometric algorithm. On
average, discriminability increased with spike train duration
without reaching a plateau at 1.62 s, which was the longest
duration tested. However, the responses of some neurons could
be used to perfectly discriminate among the 20 songs within as
little as 300 ms and the average time to plateau for neurons that
reached a discrimination performance of 95% was 726.8 ms
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FIG. 3. Four neurometrics were used to
measure neural discriminability. A: within
each metric, each dot represents the discrim-
inability of a single neuron. Neurons were
ordered independently for each neurometric,
from lowest to highest performance. Error
bars show the SD across 100 repetitions of
each neurometric. The right panel shows the
mean discrimination performance using each
neurometric. Error bars are �1SD. B: dis-
criminability measured with the K-means
and van Rossum metrics showed a strong
correspondence (r � 0.95). C: discrimina-
tion using the K-means and Victor–Purpura
metrics were also highly correlated at the
single neuron level (r � 0.96). In B and C,
solid lines are unity. D: discriminability
measured with the K-means metric was cor-
related with response strengths (driven firing
rate minus baseline firing rate) between 0
and 13 spikes/s (r � 0.69, P � 0.0001). E:
K-means discriminability increased with
spike train duration. Each gray line shows
the discriminability of a single neuron; the
black line shows the average for the popu-
lation. F: discriminability decreased as the
number of songs to discriminate increased.
The solid black line shows the average dis-
criminability for the population and the
dashed line shows chance performance at
each set size. G: as the number of songs to
discriminate increased, the spike train dura-
tion necessary to maintain discriminability
increased sublinearly. Performance is repre-
sented as color, ranging from 0 to 100%
correct. The abscissa shows the number of
songs to discriminate and the ordinate shows
the spike train duration used in the K-means
neurometric. The solid line represents the
isodiscriminabiltiy contour of 56% correct,
which was the average discriminability. The
dashed line shows the linear prediction of
spike train duration necessary to maintain
this level of discriminabitliy, based on set
sizes of 2–4 songs. The dotted-dashed line
shows the linear prediction based on set
sizes of 5–7 songs.
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(�323.7, 1SD). Together with the positive correlation ob-
served between discriminability and firing rate, these data
suggest that increased numbers of APs lead to increased neural
discrimination among songs.

We next asked how discriminability changed with the num-
ber of stimuli. For each neuron, we measured discriminability
for stimulus set sizes ranging from 2 to 20 songs. At each set
size, we ran the K-means metric 100 times, each time using a
random subset of the 20 songs. Sixty-five of 122 neurons
discriminated between two songs at 95% or better and 33 cells
maintained this level of discriminability for 20 songs (Fig. 3F).
As the number of stimuli increased from 2 to 20 songs, the
population average dropped from 86.9 to 55.8% correct.

Last, we more closely analyzed the relationships among
discriminability, spike train duration, and set size. In particular,
we tested whether the spike train duration necessary for dis-
crimination increased linearly as the number of stimuli to be
discriminated increased. We systematically adjusted stimulus
set size and stimulus–response duration and calculated the
average neural discrimination achieved for each combination
of set size and duration (Fig. 3G). From these data, we
measured the spike train duration necessary for 56% discrim-
ination performance at each set size. The performance criterion
of 56% was chosen because it was the average discriminability
across the population of neurons using 1.62 s spike trains (Fig.
3A). Neurons required 176 and 337 ms to discriminate among
3 and 4 songs at 56% discriminability, respectively. Extrapo-
lating from these values predicted very long durations for
discriminating among 20 songs. However, only 1,620 ms were
needed, showing a sublinear relationship between the number
of stimuli to discriminate and the duration necessary to main-
tain performance.

Neural discriminability is not correlated with
auditory tuning

The ability of single neuron responses to discriminate among
songs varied widely across the population. We next asked
whether discrimination was correlated with the specific spec-
tral and/or temporal features to which midbrain auditory neu-
rons were tuned. To determine how the discrimination perfor-
mance of a single neuron was related to its tuning properties,
we estimated the spectrotemporal receptive field (STRF) for
each neuron (METHODS; Theunissen et al. 2000). We used a
normalized reverse correlation technique to obtain STRFs,
which describe the joint frequency and temporal tuning of
auditory neurons (Fig. 4A). STRFs provide multiple measures
of frequency tuning (BF and excitatory BW) and temporal
tuning (temporal modulation period and EI index).

For each neuron, we measured the validity of the STRF as a
model of spectrotemporal tuning by calculating how well the
STRF predicted the responses to novel songs (those not used in
the calculation of the STRF). For this validation, predicted
poststimulus time histograms (PSTHs) were generated by con-
volving the STRF with the spectrograms of songs and the
predicted PSTHs were compared with PSTHs of the actual
neural response (Fig. 4B). Including all of the neurons from
which we recorded, the average correlation between the STRF-
predicted response and neural response was 0.59 � 0.16 (cc).
For the STRF in Fig. 4, the correlation coefficient between the
predicted and actual PSTH was 0.80. For all analyses of

spectrotemporal tuning, we limited our data set to neurons with
STRFs that predicted responses with a correlation coefficient
�0.3 (116 of 122 neurons).

The STRF in Fig. 4A shows the spectrotemporal tuning of a
neuron that is maximally responsive to 5 kHz and is excited by
a range of frequencies spanning about 3 kHz. The best fre-
quency was calculated by projecting the STRF onto the fre-
quency axis (Fig. 4A, left of STRF) and the excitatory band-
width was measured at the time corresponding to the peak of
excitation in the STRF (Fig. 4A). Temporal tuning was mea-
sured by projecting the STRF onto the time axis (Fig. 4A,
below STRF). The EI index is the summed area under the
primary excitatory and inhibitory regions of the curve, normal-
ized by the overall area (range: �1 to 1). The EI index
determines the degree to which neurons fire with either an
onset or a sustained pattern. For the STRF in Fig. 4A, the
excitatory and inhibitory regions are temporally contiguous
and excitation is greater than inhibition (EI index � 0.29);
neurons with this EI index have an onset response followed by
a smaller sustained response. We also measured the temporal
modulation period by calculating the time between the peaks of
the excitatory and inhibitory regions of the STRFs. Previous
analyses suggested that neurons with balanced excitation and
inhibition (measured as EI index near zero) and sharp
temporal tuning (measured as small temporal modulation
periods) would discriminate better than neurons with slow
modulation rates and those that were primarily excitatory
(Narayan et al. 2005).

Comparison of K-means discriminability and STRFs showed no
correlation between discriminability and either spectral or
temporal tuning (Fig. 4). Best frequency and frequency tuning
bandwidth were positively correlated with one another (r �
0.57; data not shown), but both were uncorrelated with dis-
criminability (Fig. 4, C and D). Temporal modulation period
and EI index were also uncorrelated with discriminability (Fig.
4, E and F). These findings show that neurons encoding a wide
range of acoustic features have similar abilities to discriminate
among songs.

Combined responses of multiple neurons
improve discrimination

Behavioral discrimination of complex sounds such as songs
is likely achieved through the combined activity of multiple
neurons. We asked two questions regarding how combining the
responses of multiple neurons affected the neural discrimina-
tion of songs. First, can the combined responses of multiple
neurons be used to discriminate among songs better than the
responses of single neurons? Second, are the combined re-
sponses of neurons with similar spectrotemporal tuning better
at discriminating among songs than the combined responses of
neurons with dissimilar tuning?

From the responses of single midbrain neurons, we simu-
lated 800 readout neurons that received feedforward input from
two to five cells selected at random from our set of MLd
neurons (200 populations for each number of inputs). Although
the MLd neurons were not typically recorded simultaneously,
we found that pairs of nonsimultaneously and simultaneously
recorded neurons had similar signal and noise correlations
(P � 0.6, Wilcoxon rank-sum test) and we therefore assumed
that their responses were primarily stimulus-driven (Lee et al.
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1998; Reich et al. 2001). We modeled the readout neurons in
three different ways to examine how the integration of activity
from groups of neurons affected the group’s capacity to dis-
criminate (Fig. 5). The SUM model of the readout neuron
integrated the responses from all input neurons and produced a
graded response proportional to the concurrent input from the
group. The OR model fired a single AP when one or more input
neurons fired an AP. The AND model fired only when concur-
rent input arrived from each of the input neurons. The SUM,
OR, and AND readout models simulate well-established
physiological processes; subthreshold changes in membrane
potential, suprathreshold spiking activity, and coincidence
detection, respectively. For each model, the responses of
every input neuron contributed to the response of the read-
out neuron with equal weight; inputs from highly discrim-
inating neurons were not preferentially weighted compared
with inputs from poorly discriminating neurons. Figure 5, A
and B depicts these three methods for combining the re-
sponses of groups of neurons. For analyzing group re-

sponses, we used d= to estimate neural discrimination. To
calculate d=, we measured the squared Euclidean distance
between the average neural response to a pair of songs,
normalized by the average variability in the responses to
each pair of songs (METHODS).

Using the SUM and OR models, the combined responses of
groups of neurons could be used to discriminate among songs
significantly better than the responses of single neurons (Fig.
5C). For both of these models, performance increased only
gradually with three or more inputs and did not increase
significantly between four and five inputs. The SUM and OR
models performed almost identically, which is predicted when
the inputs have few coincident spikes. Performance using the
AND model decreased as the number of inputs increased, and
saturated with three or more inputs. The AND model suffered
with increasing numbers of inputs because the criterion for
coincidence became stricter (e.g., three neurons must spike
simultaneously to make the readout fire) and therefore an
output spike became less likely.
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At each group size, we also calculated discriminability by
concatenating spike trains rather than pooling them. This
provided an approximation of the degree to which neural
responses could be used to discriminate without pooling. For
this model, the discriminability was larger than that of any of the
other models and it increased significantly for group sizes of two
to five (mean d= was 10.60, 14.18, 16.67, 18.16; for group sizes of
two, three, four, and five, respectively; data not shown). The
following analyses use only the OR readout model, but the results
are similar for the SUM model (data not shown).

We next measured how well the readout neurons performed
compared with the individual input neurons. Nearly every
two-input readout model performed better than the average
discriminability of the input neurons (Fig. 5D). For many
readout neurons, discriminability was also better than that of
the best individual neuron in the pair (Fig. 5E). We calculated
the gain in discriminability as the difference between the
discriminability of the readout neuron and the discriminability
of the best-performing input neuron in each pair. Across the
population of readout neurons, pairs discriminated significantly
better than did either of the input neurons (Fig. 5F), showing that
combined information from multiple neurons provided increased
neural discriminability compared with that of single neurons.

Groups of similarly tuned neurons have the largest gains
in discriminability

The degree to which readout neurons outperformed their
best-performing input varied considerably. To create the group

models, neurons were paired at random from the population of
MLd neurons and some pairs had more similar tuning proper-
ties than others. We next asked whether the similarity of
spectral and temporal tuning properties could account for
differences in the gain in discriminability between readout
neurons and their inputs.

Figure 6A shows two neurons with similar spectral and
temporal tuning. Both cells fired APs at similar times through-
out a song and the spike trains produced by the readout neuron
shared the temporal pattern of the inputs. Figure 6B shows two
neurons with different tuning. These neurons fired APs at
different times throughout a song and the responses of the
readout neuron reflected the combined input from both neu-
rons, resulting in spike trains with only coarse temporal pat-
terning.

Across the population of readout neurons, we measured the
best frequency and EI index for each input neuron and calcu-
lated the similarity of these tuning parameters for each pair.
Pairs of neurons with similar best frequencies had greater
increases in discriminability than did pairs of neurons with
dissimilar best frequencies (Fig. 6C). Pairs of neurons with
similar EI indices also had larger gains in neural discriminabil-
ity (Fig. 6D). Although the linear relationships between the
gain in discriminability and STRF similarity were both signif-
icant (P � 0.002 for both BF and EI correlations), the corre-
lations were not particularly strong (r � �0.29 for BF; r �
�0.21 for EI index). We next divided the neurons into quartiles
based on the similarity of their tuning properties and found that
the quartile with the most similar tuning properties had a
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significantly larger gain than the quartile with the least similar tuning (Fig. 6, F and G). The similarities between frequency
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bandwidth and temporal modulation rate were not correlated
with gains in discriminability (data not shown).

To test the maximum extent to which tuning similarity can
facilitate neural discrimination by groups of neurons, we simu-
lated readout neurons that received inputs from duplicate copies of
the same neuron. For readout neurons with these perfectly cotuned
inputs, the gain in discriminability was similar to that of the most
similarly tuned quartile of the randomized groups (Fig. 6, F and
G). This supports the finding that tuning similarity facilitates
discrimination and suggests that perfectly cotuned inputs are not
necessary for increased discriminability.

Readout neurons with inputs from similarly tuned and dis-
similarly tuned neurons had similar firing rates, dispelling the
possibility that similarly tuned pairs produced more spikes,
leading to greater discriminability (r � 0.12, readout firing rate
vs. BF similarity; r � 0.045, readout firing rate vs. EI index
similarity). We next asked whether the gain in discriminability
for the readout neurons depended on the difference in the
discriminability of the inputs. If one input was a good discrim-
inator and the other was a poor discriminator, the poor dis-
criminator would be unlikely to add to the pair’s ability to
discriminate. However, the gain in discriminability for readout
neurons was not correlated with differences in discriminability
between the two input neurons (r � �0.06; data not shown).
Furthermore, although readout discriminability was correlated
with mean input discriminability, readout gain was not (r �
�0.141), suggesting that the largest gains in discriminability
were not necessarily achieved by pairs of neurons with precise
inputs. Last, we found no significant interactions among the
gains in discriminability and BF similarity, input discriminabil-
ity difference, and input discriminability mean (P � 0.1 for all
interaction terms of the full model). These results suggest that
readout neurons with the largest gains in discriminability have
inputs that show similar spectrotemporal tuning but are not
necessarily matched in individual discrimination performance
or have a high average disciminability.

Correlated inputs facilitate discrimination by groups
of neurons

Neurons with similar best frequencies are likely to fire APs
in response to similar portions of spectrally rich, time-varying
sounds such as zebra finch songs. Neurons with the same EI
indices will produce APs with similar temporal patterns (e.g.,
bursts of APs at syllable onset). In response to complex sounds,
neurons that are similarly tuned in both frequency and time
should produce spike trains that are similar to one another. We
calculated the similarity between the individual spike trains
from each input pair using an extension of the d= metric. Spike
train similarity was significantly correlated with STRF simi-
larity (r � 0.44, spike train similarity vs. BF and EI index
similarities; data not shown). Spike train similarity was also
significantly but moderately correlated with enhanced discrim-
inability (r � �0.33; Fig. 6E), indicating that pairs of neurons
with similar spike trains had larger gains in discriminability
than gains of pairs with dissimilar spike trains. Separating the
neurons into quartiles based on spike train similarity, we found
that neurons with the most similar spike trains achieved sig-
nificantly larger gains in discriminability relative to those with
the least similar spike trains (Fig. 6H).

Because readout neurons with three inputs discriminated
significantly better than those with two inputs (Fig. 5C), we
measured the gain in discriminability for three-input readout
neurons and calculated the average similarity among the best
frequencies, EI indices, and the spike trains of the three input
neurons. Readout neurons receiving input from three neurons
with similar best frequencies and EI indices had larger gains in
discriminability than those with dissimilar inputs (r � �0.35,
BF similarity; r � �0.28, EI index similarity) and discrim-
inability was correlated with spike train similarity among the
three inputs (r � �0.31; data not shown).

Pooling correlated inputs facilitates discrimination by
compensating for imprecise neural responses

We found that readout neurons receiving pooled input from
similarly tuned cells were better discriminators than those
receiving input from dissimilarly tuned cells, and that the gain
in discriminability was strongest when input neurons produced
correlated spike trains (Fig. 6, E and H), in agreement with
previous work using pooling models (Zhang and Reid 2005).
To more closely examine the conditions under which corre-
lated inputs lead to increased gains in readout discriminability,
we simulated pairs of neurons with varying levels of temporal
precision in their spiking output—covering the range of pre-
cision observed in MLd neurons, as well as higher and lower
precision—and varying levels of correlation between their
responses (Fig. 7).

We generated spike trains for a pair of simulated neurons
using the spiking response from a single MLd neuron (Fig. 7A),
which served as a time-varying probability distribution from
which spike trains were sampled. To manipulate the correla-
tions in the responses of the pair, we jittered the timing of each
“spike” in the template of one of the simulated neurons (Fig. 7,
B and C). We introduced jitter ranging from �1 to �125 ms,
with smaller jitter resulting in more correlated inputs. For Fig.
7, B, D, F, and H, the left panels represent a pair of neurons
with strong spike train correlations and the right panels repre-
sent a pair of neurons with less correlated spike trains.

To control the temporal precision of the simulated spike
trains, we smoothed the point processes with a Hanning win-
dow with widths ranging from 1 to 100 ms (Fig. 7, D and E):
wider smoothing windows created spike trains with greater
trial-to-trial variability. The probability distributions in Fig. 7D
were smoothed with Hanning widths of 2, 8, and 20 ms (top to
bottom).

The blue and red spike trains in Fig. 7F were generated from
the distributions in Fig. 7D. The shuffled autocorrelograms
(SACs) in Fig. 7G show the temporal precision of real MLd
neurons (black trace) compared with the temporal precision of
simulated neurons (mean � 1SD are shown in red). Simulated
neurons with intermediate levels of precision (e.g., 8 ms) have
SACs that most closely match the peak (correlation index) and
width of real MLd neurons.

Using the simulated single neurons shown in Fig. 7F, we
simulated readout neurons using the OR readout model (Fig. 5,
A and B). The black spike trains in Fig. 7H are the output of an
OR readout neuron that received the red and blue spike trains
as inputs. As the temporal precision of the input neurons
decreased, the readout neuron became worse at discriminating
among different songs and this effect was strongest for readout
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FIG. 7. Simulating pairs of neurons with varying degrees of temporal precision and spike train similarity. A: a spike train from a real MLd neuron was used
as a template from which simulated spike trains were generated. Each row shows the spiking response to one presentation of a single song; the bottom row
(colored blue) was used as the template for the first simulated neuron in each pair (N1). B, D, F, and H: the left column in each panel shows a pair of neurons
with highly correlated responses and the right column shows a pair of neurons with less correlated responses. B: temporal jitter was added to each “spike” in
the N1 template to create a template for the second simulated neuron (N2). C: close-up of the amount of jitter introduced to the template in the left and right
panels of B. D: the templates for N1 and N2 were smoothed with Hanning windows that ranged in width from 1 to 100 ms, resulting in continuous probability
distributions. The blue distributions correspond to N1 and the red distributions to N2. The top, bottom, and middle panels show smoothing widths of 2, 8, and
20 ms. E: close-up of the amount of smoothing applied to the templates for N1 and N2. F: 10 spike trains were generated from each of the probability
distributions. The top, middle, and bottom panels show spike trains for N1 and N2, generated from the respective distributions in D. G: the average shuffled
autocorrelogram (SAC) of real MLd neurons (mean shown in black) compared with the SACs of simulated neurons (�1SD shown in red) with 2, 8, and 20
ms smoothing windows (from top to bottom). H: responses from an OR readout neurons that received simulated spike trains from N1 and N2 as inputs.
From top to bottom, the readout neurons received input with progressively coarser temporal precision. Each panel shows 10 simulated responses to each
of 5 songs.
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neurons that received less correlated input (shown qualitatively
in the bottom row of Fig. 7H).

For each MLd neuron that we recorded (n � 122), we
simulated a pair of neurons that varied in correlation and
temporal precision. As the size of the window with which we
smoothed the template widened, the precision of the simulated
neurons decreased (Fig. 8A). The measured precision of a
subset of simulated neurons matched closely with real MLd
neurons and we used this criterion to segregate the simulated
neurons into groups that had better (Precise), similar (Moder-
ately Precise), worse (Less Precise), and poor (Imprecise)
precision, relative to real MLd neurons. Simulated neurons
with all levels of temporal precision fell within the range of
discriminability observed in real MLd neurons, measured as d=
(data not shown).

For each readout neuron, we calculated the discriminability
gain. The gain in discriminability depended on both the precision
and the similarity of the inputs. Readout neurons with highly
precise inputs had the largest gains in discriminability. Regardless
of the temporal precision of the inputs, readout neurons achieved
the largest gains if the inputs had similar spike trains.

To determine the degree to which input dissimilarity af-
fected readout gain, we normalized the gain in discriminability
for each level of temporal precision, such that for highly
similar inputs, the readout neurons in each group performed
equally well (Fig. 8B). Although the gain in discriminabiltiy
always decreased as the inputs became dissimiliar, this de-
crease was the most pronounced for readout neurons that
received inputs with MLd-like (Moderate) levels of precision,
which quickly dropped to roughly 60% of maximum when the
inputs became dissimilar. For these readout neurons, discrim-
inability was highly dependent on input similarity. The gain of
readout neurons with Highly Precise and Imprecise inputs
decreased slowly when the inputs became less correlated, and
plateaued at roughly 70% of their maximum gain. For these
readout neurons, discriminability was less dependent on input

similarity. These simulations suggest that the advantages of
pooling correlated inputs are most pronounced for neurons that
have biological levels of temporal precision.

D I S C U S S I O N

We examined how well the responses of single auditory
midbrain neurons could be used to discriminate among vocal-
izations and the relationship between neural discriminability
and spectrotemporal tuning. We also investigated how well the
combined responses of groups of neurons could be used to
discriminate among songs. We found that single neuron re-
sponses could be used to discriminate among songs with a wide
range of accuracy. For single neurons, neural discrimination
performance was not related to tuning properties such as best
frequency or EI index. By calculating the pooled responses of
multiple neurons, we found that groups of auditory neurons
discriminated among songs significantly better than did single
neurons, particularly when the neurons in the group were similarly
tuned. Last, we showed through simulations that the pooling of
redundant spike trains was particularly advantageous for neurons
with biological levels of spike train reliability.

Discrimination and spectrotemporal tuning

We found that the spectral features to which neurons were
tuned did not correlate with how well the neurons’ spike trains
could be used to discriminate among songs. A previous theo-
retical study suggested that auditory neurons with temporally
delayed inhibition (i.e., EI index � 0) should produce spike
trains that discriminate better than neurons that are purely
excitatory (i.e., EI index � 1) (Narayan et al. 2005). Delayed
inhibition occurs in the same frequency range as excitation (see
STRF in Fig. 4A) and is a potential mechanism for producing
reliable and temporally precise responses (see Fig. 1B). Here,
we found that the EI index of a neuron did not correlate with
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the neuron’s ability to discriminate; neurons that performed
with 100% correct neural discrimination ranged from 0 to 1 in
EI index. However, the majority of the neurons from which we
recorded had at least some delayed inhibition (Fig. 4F), which
appears to be a typical tuning property of auditory midbrain
neurons (Woolley et al. 2006, 2009). This limited our analysis of
how delayed inhibition may influence neural discrimination in
midbrain neurons. Further, zebra finch songs consist of syllables
separated by silent epochs and the temporal pattern of every song
is different. Neurons without delayed inhibition will fire during
syllables and not during silent epochs, resulting in spike trains that
mirror the temporal pattern of each song. This temporal pattern
alone may be sufficient for neural discrimination.

Although the ability of single neuron responses to discrim-
inate was not correlated with spectrotemporal tuning, it was
highly correlated with firing rate. In general, increased num-
bers of APs do not necessarily provide more information about
stimulus identity. For instance, although higher firing rates lead
to a larger probability of coincident spikes over multiple
presentations of a single song, higher firing rates also increase
the probability of coincident spikes during different songs.
However, because the baseline firing rates of MLd neurons
were near zero, spikes that occurred during song playback were
generally driven by the acoustic features of the song rather than
randomly scattered throughout the spike train and were there-
fore useful in discrimination.

Pooling models of neural integration

We investigated the degree to which neural discrimination
was facilitated by groups of neurons compared with single
neurons. For this study, we used a pooling model of feedfor-
ward neural integration, in which spike trains from multiple
neurons were combined to produce a single output spike train.
Pooling models have been used to investigate motor planning
(Georgopoulos et al. 1986) and neural responses to somatosen-
sory (Arabzadeh et al. 2004), visual (Chen et al. 2006), olfac-
tory (Geffen et al. 2009), and auditory stimuli (Fitzpatrick et al.
1997; Woolley et al. 2005). In previous implementations of
pooling models, the neural response that was pooled was
typically the average firing rate to a stimulus that varied along
one or two dimensions. Rather than firing rate, we pooled the
spike trains produced by multiple neurons in response to single
presentations of a complex sound. Although the neurons that were
pooled were not recorded simultaneously, the noise correlations
observed in simultaneously and nonsimultaneously recorded neu-
rons did not differ. This type of pooling mimics the synaptic
connectivity with which neurons share information in vivo, but
uses a more complex response property than firing rate alone. In
agreement with previous studies using pooling models, we found
significant gains in discriminability in readout neurons compared
with single neurons (Figs. 5 and 6).

Our pooling model considered only excitatory feedforward
connections, in which every input was equally weighted. Other
pooling rules could be considered (Chen et al. 2006). For instance,
we could have assigned weights to maximize the discriminability
of the readout neuron, using both positive and negative weights.
Alternatively, the weights could have been determined based on
the discriminability of the inputs: highly discriminating inputs
would be assigned larger weights than poorly discriminating
inputs. Assigning positive and negative weights to input neurons

can facilitate discrimination by canceling correlated noise among
input signals (Chen et al. 2006), whereas assigning weights based
on discriminability can facilitate discrimination by supplying
primarily reliable inputs to the readout neurons.

Further studies could also examine how pooling may be opti-
mized using the known organization of auditory circuits. In
particular, auditory neurons are excited by sounds at a specific
range of frequencies and are often inhibited by frequencies above
or below this excitatory range (known as lateral inhibition) and
similarly tuned neurons are often located near one another (Lee et
al. 2004; Lim and Anderson 2007). These observations provide
known biases in the probability with which auditory neurons
converge and suggest the weights (e.g., excitatory or inhibitory)
with which the inputs to a readout neuron should be scaled.
Observing these principles of connectivity could produce feedfor-
ward models that further facilitate neural discrimination.

Although pooling models of population coding measure
neural discriminability in a way that mimics synaptic connec-
tivity, they are not the only way to measure population dis-
criminability; also, they do not necessarily measure the optimal
discriminability of a group of neurons. A previously described
class of models uses the joint information contained in the
responses of two or more neurons by expanding on the VP
(Aronov et al. 2003) and VR metrics (Houghton and Sen 2008).
For these models, retaining at least some information regarding
which input neuron fired each spike significantly improved dis-
criminability. Our pooling implementation is similar to the
summed population code described in Aronov et al. (2003).

Another common approach is to predict the stimulus that
evoked a set of responses from a group of neurons, without
pooling the responses. This approach typically uses techniques
such as mutual information (MI) or maximum likelihood (ML)
inference (Rieke et al. 1999). As opposed to pooling models
that integrate multiple inputs into a single spike train, optimal
coding models such as these assume that the observer—the
experimenter or the experimental subject—has access to all of
the individual spike trains from each neuron in the group
(Deneve et al. 1999; Petersen et al. 2001; Warland et al. 1997).
If the responses of multiple neurons are kept separate, such as
with optimal coding models, independent inputs maximize
information transmission and facilitate discrimination, whereas
redundant inputs provide little if any increased information
(Barlow 1972; Machens et al. 2004). The difference between
optimal coding models and pooling models is accounted for by
the way in which spiking information is conserved in each
model; in a pooling model, the identity of a single output spike
cannot be traced back to a particular input neuron, whereas for
optimal coding models, the APs belonging to each spike train
remain segregated. For the optimal coding models, removing
the information about which input neuron produced each spike
significantly reduces the amount of information encoded by
groups of neurons, more closely matching the results observed
in pooling models (Montani et al. 2007).

Redundant coding facilitates discrimination

For the readout neurons that we simulated, discriminability
was largest when the spike trains from small groups of neurons
were correlated with one another. This suggests that for com-
plex, time-varying stimuli, redundant coding may be useful for
neural discrimination. One explanation for the usefulness of
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redundancy is to compensate for the trial-to-trial spike train
variability of neurons with imprecise spike trains and to coun-
teract the tendency for spike-timing variability to increase
between the sensory epithelium and the cortex (Kara et al.
2000). Variability in spike timing limits the amount of infor-
mation that can be conveyed by single neurons (Herz et al.
2005) and redundant coding is thought to increase the signal-
to-noise ratio of sensory information for neurons with biolog-
ical levels of spike-timing precision (Woolley et al. 2006).
Previous theoretical (Salinas and Sejnowski 2000) and in vitro
(Reyes 2003; Stevens and Zador 1998; Zador 1998) studies
using similar models of neural integration found that input
correlations increased the reliability of a readout neuron rela-
tive to the reliability of the inputs. Our model suggests that a
similar phenomenon could occur in vivo.

The fact that reliability actually does decrease as sensory
information propagates (Kara et al. 2000) suggests that this
pooling mechanism is not fully compensatory. For instance,
previous measures of neural discriminability in the auditory
forebrain of zebra finches, at least two synapses removed from
MLd, showed less reliable discrimination than that in the
midbrain (Wang et al. 2007). Our model used a simple method
of neural integration that reliably relayed spikes from input
neurons to the readout neuron. In vivo, synaptic transmission is
less reliable (Allen and Stevens 1994) and many presynaptic
events may be necessary to trigger postsynaptic events. Fur-
thermore, fluctuations in membrane potential at the readout
neuron may cause spontaneous, nonsynaptically driven spikes
to occur, further decreasing reliability. For example, MLd
neurons show lower spontaneous rates than do field L neurons,
which are less reliable than MLd neurons (Wang et al. 2007;
Woolley and Casseday 2004). Our model aimed to capture the
capacity of groups of neurons to discriminate using a simple model of
synaptic integration. Extending our model to include stochastic
noise and imperfect integration should decrease the capacity of
readout neurons to discriminate.

A previous experiment that recorded from auditory neurons
in the midbrain, thalamus, and cortex showed that redundancy
decreased along the ascending auditory system, particularly
between the inferior colliculus (the mammalian homologue of
MLd) and the thalamus (Chechik et al. 2006). Our observation
that pooling the spike trains of similarly tuned neurons maxi-
mized discriminability may support this finding. Our model
encompasses the idea that MLd neurons with similar tuning
synapse on the same readout (thalamic) neurons. It is unclear
whether convergence such as this is the primary type of
connectivity between the midbrain and thalamus, or whether
divergence is also prevalent. However, the tonotopic organi-
zation of auditory information suggests that some degree of
convergence is maintained along the auditory pathway (see
following text for discussion). This convergence of similarly
tuned MLd neurons onto a small population of thalamic neu-
rons could reduce the redundancy of thalamic neurons by the
ratio of readout (thalamic) to input (midbrain) neurons.

Topographical organization and neural discrimination

In mammals and birds, auditory neurons are organized
tonotopically (Merzenich et al. 1975; Muller and Leppelsack
1985; Reale and Imig 1980; Ryan et al. 1982). Ascending and
descending projections to the thalamus and midbrain are also

organized tonotopically, as are locally projecting neurons
within the telencephelon (Lee et al. 2004; Lim and Anderson
2007). The likelihood of auditory neurons synapsing onto a
downstream neuron or with one another is therefore biased
toward neurons with similar tuning properties.

The current findings, along with previous work showing that
pooling spike trains from correlated neurons improves the
discriminability and spike train precision of the readout neu-
rons (Reyes 2003), provide a theoretical framework for how
the auditory system should be wired for optimal discrimina-
tion: similarly tuned neurons should synapse onto the same
downstream neurons or with one another. Importantly, the
architecture that produces optimal discrimination matches the
anatomically and electrophysiologically observed frequency or-
ganization of the auditory system (Schreiner and Winer 2007).
Furthermore, we observed a gain in discriminability for neurons
that had similar temporal tuning. Electrophysiology experiments
suggest that the temporal response properties of midbrain auditory
neurons are also organized systematically (Rodriguez et al. 2010)
and that temporal information is conserved between the thalamus
and cortex (Miller et al. 2001). It will be important to uncover the
degree to which temporal information is topographically mapped
throughout the auditory system.

The current finding that discrimination of complex stimuli is
optimized via redundant coding may be important in other
sensory modalities such as vision and somatosensation, where
neural information is also organized topographically (Powell
and Mountcastle 1959; Tootell et al. 1982; Woolsey and Van
der Loos 1970). Topographic maps are thought to aid in
behavioral and perceptual tasks such as sensory learning (Har-
ris et al. 1999), pitch perception (Oxenham et al. 2004), and
figure–ground segregation (Roelfsema et al. 2002). Our cur-
rent findings, coupled with the known topographic organiza-
tion of neural information in multiple sensory modalities,
suggest further studies that could investigate whether the to-
pographic organization of sensory information is useful in
discriminating among complex sensory cues.
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